Maximum likelihood estimation for stationary point processes
نویسندگان
چکیده
منابع مشابه
Maximum likelihood estimation of determinantal point processes
Determinantal point processes (DPPs) have wide-ranging applications in machine learning, where they are used to enforce the notion of diversity in subset selection problems. Many estimators have been proposed, but surprisingly the basic properties of the maximum likelihood estimator (MLE) have received little attention. The difficulty is that it is a non-concave maximization problem, and such f...
متن کاملMaximum Likelihood Estimation of Stationary Multivariate ARFIMA Processes
This paper considers the maximum likelihood estimation (MLE) of a class of stationary and invertible vector autoregressive fractionally integrated moving-average (VARFIMA) processes considered in (26) of Luceño [1] or Model A of Lobato [2] where each component yi,t is a fractionally integrated process of order di, i = 1, . . . , r. Under the conditions outlined in Assumption 1 of this paper, th...
متن کاملMaximum Likelihood Estimation and Forecasting for GARCH, Markov Switching, and Locally Stationary Wavelet Processes
Yingfu Xie. Maximum Likelihood Estimation and Forecasting for GARCH, Markov Switching, and Locally Stationary Wavelet Processes. Doctoral Thesis. ISSN 1652-6880, ISBN 978-91-85913-06-0. Financial time series are frequently met both in daily life and the scientific world. It is clearly of importance to study the financial time series, to understand the mechanism giving rise to the data, and/or p...
متن کاملAsymptotic Theory for Maximum Likelihood Estimation of the Memory Parameter in Stationary Gaussian Processes
Consistency, asymptotic normality and e¢ ciency of the maximum likelihood estimator for stationary Gaussian time series, were shown to hold in the short memory case by Hannan (1973) and in the long memory case by Dahlhaus (1989). In this paper, we extend these results to the entire stationarity region, including the case of antipersistence and noninvertibility. In the process of proving the mai...
متن کاملChange Point Estimation of the Stationary State in Auto Regressive Moving Average Models, Using Maximum Likelihood Estimation and Singular Value Decomposition-based Filtering
In this paper, for the first time, the subject of change point estimation has been utilized in the stationary state of auto regressive moving average (ARMA) (1, 1). In the monitoring phase, in case the features of the question pursue a time series, i.e., ARMA(1,1), on the basis of the maximum likelihood technique, an approach will be developed for the estimation of the stationary state’s change...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the National Academy of Sciences
سال: 1986
ISSN: 0027-8424,1091-6490
DOI: 10.1073/pnas.83.3.541